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Kauffman's random Boolean nets are studied on the square lattice by computer 
simulation comparing parallel and sequential updating of the automata. At the 
phase transition the fractal dimensions of time and actual damage are found to 
be independent of the updating method. 
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Almost 20 years ago, the most disordered cellular automaton was 
introduced by Kauffman (1) as a model for cell differentiation. Large 
systems of binary variables--representing on and off genes--were studied 
regarding their development in time, which is determined by the interaction 
between the elements. The behavior of such genetic nets gives quite a few 
hints on how a certain order required for living organisms can arise out of 
complete disorder. The Kauffman model works in the following way: at the 
beginning each lattice site gets a randomly chosen initial value ai which is 1 
or 0. The time evolution is determined by a set of Boolean functions which 
describe mathematically the interaction between the elements of the net. In 
each time step, spin i is influenced by K other variables of the same system 
and its new value at time t + 1 is given by the value of a function 

for a given configuration of K input spins: 

ai(t + 1)=  fi(o'/a(t),..., O',x(t)) 
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K is called the connectivity of the system. The fact that apart from the 
initial spin configuration also the Boolean functions are chosen at random 
for each spin caused the great disorder in this kind of cellular automata. 

Already Kauffman investigated the stability of such a genetic system 
against small mutations. The asymptotic damage ~k(t~ oc) is then the 
number of sites affected by this mutation after a sufficiently long time. 
Derrida and Stauffer (4) studied such damage spreading in the square 
Kauffman model by varying the choice of Boolean functions instead of the 
connectivity. Here the set of interaction rules is biased by a parameter p, 
which is the probability for a function at a given neighbor configuration to 
give the value 1. They observed a phase transition from a frozen phase (for 
small p), where damage mostly remains limited, into a chaotic phase (for 
large values of p), where damage is more likely to spread over the whole 
lattice. At the transition point p,. one can define the proportionalities 

t o c L  D' and MactocL  D 

where t is the time the damage took to touch the boundary of the system 
and M is the mass of this damage. 

The scaling exponents D' and D are then the fractal dimensions of 
time and mass, which determine the universality class of this model. 
Analogously, de Arcangelis (6) and Hansen (9) presented the values of Pc and 
the critical exponents for the cubic and the four-dimensional lattice. The 
standard square model was compared with some variations to check for 
universality of the exponents(7); sequential updating seemed to change the 
exponents in these preliminary tests. (7) 

The purpose of the present study is to compare the results for 
simultaneous updating with the behavior of the square lattice where the 
spins are sequentially updated. 

For the classical model with parallel updating the time evolution is 
realized in the following way: in each time step for every spin its new value 
is calculated using the specific Boolean function and then it is stored. After 
this has been done for the sites of the whole lattice, at the end of the time 
step they are all updated simultaneously. In the sequential model each spin 
is immediately flipped when its new value has been calculated. This way 
every lattice sites is influenced by the old values (at time t) of its right and 
lower neighbors, but also by the new values (at time t + 1) of its left and 
upper neighbors, if we go through the lattice like a typewriter. Obviously, 
the time steps themselves are now divided into N different, smaller time 
steps and the number of possible states of the whole lattice has increased to 
N ,  2 N from 2 N possible configurations in the classical case. 

Furthermore, the damage has the chance to reach the boundaries 
during the first step and instead of spreading symmetrically into all four 
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directions it will probably spread faster downward and to the right. So 
touching time and actual damage are expected to be smaller than with 
parallel updating. 

The simulations have been realized on an IBM 4341 computer with 
32 bits per word, which made it possible to store 32 spin values in one 
computer word using muttispin-coding technique. (n'12) Unfortunately, this 
programming technique based upon the da Silva-Herrmann algorithm is 
not able to model sequential updating correctly, so partly these 
experiments had to be realized by a slower program (12.6 #sec/step instead 
of 1.4 #sec/step with the fast program), using a whole computer word for 
the storage of one single spin value. 

To determine Pc, I used two different methods. First following the 
Landau theory of phase transitions, I looked for the value of p where the 
order parameter ~(oe) vanishes. At the center of a 64 x 64 square lattice an 
initial damage was introduced and after 1000 time steps the Hemming 
distance was registered and plotted against different values of p. Several 
tests showed that ~(1000) is a good approximation of ~ ( ~ )  for a lattice of 
that size. The order parameter vanishes at pc=0.29 +0.01 for both 
simultaneous and sequential updating, consistent with known results 
(Fig. 1). (n'12~ Similar investigations of lattices initialized with a concen- 
tration p instead of 0.5 of spins of the value 1 gave the same results for p,. 

Then I used another method to determine Pc which takes the specific 
properties of the two phases and the transition point into consideration. In 
the frozen phase below p~. in most cases the damage should remain finite, 
i.e., not touch the boundaries of the system. As the lattice itself is of finite 
size, the success rate of damage spreading not only depends on p, but also 
on the system size. If the mean damage cloud size exceeds the size of the 
lattice, nevertheless a large rate of success will be observed in the frozen 
phase, too. Increasing L, a sudden decrease of successful touching will be 
noticed as soon as the system gets larger than the average damage cloud. 

In contrast, in the chaotic phase the success rate is quite independent 
of lattice size; the rate of success remains constant at about 50-60 % in the 
classical model. At p--Pc success rates decrease smoothly with increasing 
system size. Figure2 shows the percentage of successful runs (total 
1000runs) plotted against the linear dimension L of the systems for 
different p. In spite of strong fluctuations, the result of Pc = 0.29 _+ 0.01 for 
both parallel and sequential updating has been confirmed by this second 
experiment. Another series of simulations was realized for lattices initialized 
with a concentration p of up spins, but no disagreement of the results has 
been noticed. 

For the investigation of fractal dimensions I simulated systems of size 
L = 32, 64, 96, and 128 at p = 0.29 (1000 runs each) both with parallel and 
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(a) Damage after 1000 time steps ~k(oo) versus p in a 64x64 lattice with 
simultaneous updating. ~(oo) vanishes at 0.29 _+ 0.01. (b) Same as (a) for sequential updating. 
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(b) 
(a) Parallel updating: Success rates (total 1000 runs) versus linear dimension L of the 

system for different values ofp.  A smooth decrease of success rates is seen for p = 0.29 + 0.0l. 
(b) Same as (a) for sequential updating. A, p = 0.28; �9 p = 0.29; [], p = 0.3. 
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(a) The average time for a damage to touch the boundaries of a system versus linear 
system size L (log-log plot) at p = 0.29. The slope is the scaling exponent of time D~,ar = 1.54 
(parallel updating, 1000 runs). (b) Same as (a) for sequential updating slope: D'se q = 1.65. 
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Fig. 4. (a) The actual damage averaged over the succesful runs plotted versus L at p = 0 , 2 9  
(log-log plot). The slope is the scaling exponent of damage Dpa r = 1.59 (parallel updating, 
1000 runs). (b) Same as (a) for sequential updating slope: D~q = 1.54. 
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Fig. 5. 
200 runs). (a) Average touching time versus L (log-log plot). Slope D'se q = 

actual damage versus L (log-log plot). Slope D s e  q = 1.56. 

I I I I I I I [ 
3.4 3,6 3,8 4 4.2 4.4 4.6 4.8 

I n L  

(b )  
Sequential updating simulated with correct boundary conditions (slow algorithm, 

1.65. (b) Average 
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sequential updating. Touching time and actual damage were averaged over 
all successful runs. The slope of log-log plots of time and mass against one- 
dimensional system size L gives the corresponding critical exponent (Figs. 3 
and 4): 

D~,ar = 1.54_____0.1, D p a r =  1.59+0.05 

D'seq = 1.65 + 0.1, Dseq = 1.54 • 0.05 

(statistical errors only). These simulations were done using multispin 
coding. It has been mentioned earlier that this technique may not give the 
correct results for the case of sequential updating, although therein 
simultaneousness is also violated, but in a slightly biased way. So finally 
the sequential model was treated again, this time with the help of a slower 
program without bit operations, to confirm the results obtained before. 
Figure 5 shows the log-log plots of time and actual damage against L; the 
values 

D'se q = 1.65 +0.2, Dse q = 1.56+0.1 

perfectly agree with the former results. 

C O N C L U S I O N  

I have investigated the two-dimensional Kauffman model on a square 
lattice and observed a phase transition for simultaneous as well as for 
sequential updating of the spins. In both versions the transition occurs at 
the same value of 

Pc = 0.29 _+ 0.01 

The critical exponents of the time an initial damage needs to touch the 
boundaries of the system and the mass of this damage have been measured 
and have turned out to be the same for both models, 

D' = 1.6 = 0.2, D =  1.6_+0.1 

in agreement with the results for the standard square model. (<13) 
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NOTE A D D E D  IN PROOF 

Similar results were found for the Ising model by A. U. Neumann and 
B. Derrida, J. Phys. (Paris) 49:1647 (1988) and for Q2R cellular automata 
by U. Maeks, unpublished. 
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